排中律はHPM + CM₂で証明可能
1. $ \phi \lor \lnot \phi \to \bot \vdash (\phi \lor \lnot \phi \to \bot) \to (\phi \to (\phi \lor \lnot \phi \to \bot)) ($ \sf K)
2. $ \phi \lor \lnot \phi \to \bot \vdash \phi \lor \lnot \phi \to \bot ($ \sf Axm)
3. $ \phi \lor \lnot \phi \to \bot \vdash \phi \to (\phi \lor \lnot \phi \to \bot) (1.と2.の$ \sf MP)
4. $ \phi \lor \lnot \phi \to \bot \vdash \phi \to \phi \lor \lnot \phi ($ \sf I_\lor)
5. $ \phi \lor \lnot \phi \to \bot \vdash (\phi \to (\phi \lor \lnot \phi \to \bot)) \to ((\phi \to \phi \lor \lnot \phi) \to (\phi \to \bot))($ \sf S)
6. $ \phi \lor \lnot \phi \to \bot \vdash (\phi \to \phi \lor \lnot \phi) \to (\phi \to \bot)(5.と3.の$ \sf MP)
7. $ \phi \lor \lnot \phi \to \bot \vdash \phi \to \bot(6.と4.の$ \sf MP)
8. $ \phi \lor \lnot \phi \to \bot \vdash \lnot\phi \to \phi \lor \lnot \phi($ \sf I_\lor)
9. $ \phi \lor \lnot \phi \to \bot \vdash\phi \lor \lnot \phi(8.と7.の$ \sf MP)
10.$ \vdash (\phi \lor \lnot \phi \to \bot) \to \phi \lor \lnot \phi(演繹定理) 11.$ \vdash ((\phi \lor \lnot \phi \to \bot) \to \phi \lor \lnot \phi) \to \phi \lor \lnot \phi($ \sf CM_2)
12.$ \vdash \phi \lor \lnot \phi(11.と10.の$ \sf MP)